Molecular Structure, Membrane Interactions, and Toxicity of the Islet Amyloid Polypeptide in Type 2 Diabetes Mellitus
نویسندگان
چکیده
Human islet amyloid polypeptide (hIAPP) is the major component of the amyloid deposits found in the pancreatic islets of patients with type 2 diabetes mellitus (T2DM). Mature hIAPP, a 37-aa peptide, is natively unfolded in its monomeric state but forms islet amyloid in T2DM. In common with other misfolded and aggregated proteins, amyloid formation involves aggregation of monomers of hIAPP into oligomers, fibrils, and ultimately mature amyloid deposits. hIAPP is coproduced and stored with insulin by the pancreatic islet β-cells and is released in response to the stimuli that lead to insulin secretion. Accumulating evidence suggests that hIAPP amyloid deposits that accompany T2DM are not just an insignificant phenomenon derived from the disease progression but that hIAPP aggregation induces processes that impair the functionality and the viability of β-cells. In this review, we particularly focus on hIAPP structure, hIAPP aggregation, and hIAPP-membrane interactions. We will also discuss recent findings on the mechanism of hIAPP-membrane damage and on hIAPP-induced cell death. Finally, the development of successful antiamyloidogenic agents that prevent hIAPP fibril formation will be examined.
منابع مشابه
Islet Amyloid Polypeptide is not a Target Antigen for CD8+ T-Cells in Type 2 Diabetes
Background: Type 2 diabetes (T2D) is a chronic metabolic disorder in which beta-cells are destroyed. The islet amyloid polypeptide (IAPP) produced by beta-cells has been reported to influence beta-cell destruction. Objective: To evaluate if IAPP can act as an autoantigen and therefore, to see if CD8 + T-cells specific for this protein might be present in T2D patients. Methods: Peripheral blood ...
متن کاملIslet Amyloid Polypeptide: Structure, Function, and Pathophysiology
The hormone islet amyloid polypeptide (IAPP, or amylin) plays a role in glucose homeostasis but aggregates to form islet amyloid in type-2 diabetes. Islet amyloid formation contributes to β-cell dysfunction and death in the disease and to the failure of islet transplants. Recent work suggests a role for IAPP aggregation in cardiovascular complications of type-2 diabetes and hints at a possible ...
متن کاملBRICHOS domain of Bri2 inhibits islet amyloid polypeptide (IAPP) fibril formation and toxicity in human beta cells
Aggregation of islet amyloid polypeptide (IAPP) into amyloid fibrils in islets of Langerhans is associated with type 2 diabetes, and formation of toxic IAPP species is believed to contribute to the loss of insulin-producing beta cells. The BRICHOS domain of integral membrane protein 2B (Bri2), a transmembrane protein expressed in several peripheral tissues and in the brain, has recently been sh...
متن کاملα-Helical Structures Drive Early Stages of Self-Assembly of Amyloidogenic Amyloid Polypeptide Aggregate Formation in Membranes
The human islet amyloid polypeptide (hIAPP) is the primary component in the toxic islet amyloid deposits in type-2 diabetes. hIAPP self-assembles to aggregates that permeabilize membranes and constitutes amyloid plaques. Uncovering the mechanisms of amyloid self-assembly is the key to understanding amyloid toxicity and treatment. Although structurally similar, hIAPP's rat counterpart, the rat i...
متن کاملStar Polymers Reduce Islet Amyloid Polypeptide Toxicity via Accelerated Amyloid Aggregation
Protein aggregation into amyloid fibrils is a ubiquitous phenomenon across the spectrum of neurodegenerative disorders and type 2 diabetes. A common strategy against amyloidogenesis is to minimize the populations of toxic oligomers and protofibrils by inhibiting protein aggregation with small molecules or nanoparticles. However, melanin synthesis in nature is realized by accelerated protein fib...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 2016 شماره
صفحات -
تاریخ انتشار 2016